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SUMMARY 

. 

The near-24-hour SyncomII satellite (with an almost circular orbit)has been under continuous 
observation by range and range-rate radar and minitrack stations for 7 months since mid-August 
1963, when the orbit was  relocated, placing its mean longitude at about 55 degrees west of Green- 
wich. During the first 4 months of this period, the satellite was allowed to drift free in the grav- 
ity fields of the earth, sun, and moon. In this first free-drift period, the satellite experienced a 
mean daily drift acceleration of its ascending node (with respect to Greenwich) of 

- (1.27 f .02) x degrees/day2 . (1) 

The average growth of the semimajor axis for this period w a s  

(.0993 f .0042) km/day . (2 1 

These values, checked by a simulated particle trajectory run on the Goddard ITEM program, con- 
firm a significant longitude-dependent earth-gravity potential. The existence of a 'Yriaxial earth" 
has been a speculation of geodesists since the early years of this century. 

During the last 3 drift period, starting at the end of November 1963, 
Syncom II was of Greenwich. In this period, the mean daily 
drift 

- (1.32 .02) x degrees/day2 . 
I 

The average growth of the semimajor axis for this period was  

(3) 

(.0994 f .0080) km/day - (4 ) 

Combining the results of (1) through (4) above for the two separate drift periods, it is estimated 
(on the basis of a triaxial geoid only) that the absolute magnitude of the longitude dependent-gravity 
coefficient JZz is 

J,, = - (1.7 f .05) X . 

This value corresponds to a difference in major and minor earth-equatorial radii of 

(ac - bc ) = 213 f 6 feet . 

The best present estimate of the position of the earth's major equatorial axis is 

A,, = 19 f 6 degrees west of Greenwich . 
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In view of previous estimates of the higher order tesseral harmonics of the earth's field, the 
true value of Jzz ,  separated from the small influence Of gravity anomalies of third and higher 
order on the reduction for a triaxial earth only at "synchronousT1 altitudes, will probably be some- 
what  higher than the -1.7 x 
be greater than -2.2 x 
major axis is not expected to differ significantly from that reported herein, when all higher tes- 
seral harmonics are  accounted for. (See Appendix B.) 

reported herein. The true value of J ~ ~ ,  however, is not likely to 
The true location of the earth equator's o r  smaller than -1.6 X 

The reported value of J z 2  = -1.7 X implies that a maximum tangential velocity correc- 
tion of 

AV, = 5.36 ft./sec./year 

is required to keep a satellite with a 24-hour circular equatorial orbit continuously "on station" 
at a longitude midway between the longitudes of the equatorial major and minor axes of the earth. 
The original "conservative" Syncom I design requirement of AV, = 17 ft./sec./year correction 
capability w a s  based on the longitude-dependent earth field of Izsak (January 1961), which is now 
outdated. (See Appendix B and Reference 4.)  
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INT RODEC TION 

SUMMARY OF PREVIOUS INVESTIGATIONS AND DISCUSSION OF RESULTS 

The question of the existence and extent of the longitude-dependence of the earth's external 
gravity field has concerned geodesists since the early years of this century. (See Reference 1 for 
example.) The existence of a longitude-dependent field implies the existence of inhomogeneities 
and states of stress within the earth which are  of fundamental importance to all dynamical theories 
of the earth's interior. 

In Appendix B, I have summarized 23 reductions of gravimetric, astro-geodetic, and satellite 
gravity data reporting longitude-dependent terms in the earth's external gravity field represented 
as a ser ies  of spherical harmonics. Ten of these reductions are based on worldwide surface- 
gravity measurements only. Although surface measurements have the advantage of providing an 
excellent sampling of the field in latitude and longitude, they a r e  seriously affected by even small 
uncertainties in station position with respect to the mean earth geoid, as these are of the same 
order-of-magnitude as the reported geoid deviations caused by longitude-dependent gravity. 

Of the 12 satellite reduced tesseral gravity fields, those of Kozai (1962), Izsak (July 1963), 
Kaula (September 1963), and Guier (1963) show good general agreement in the eastern hemisphere 
when the constants are used as a set. All of these observers are aware, nevertheless, of the high 
degree of uncertainty in the reported values of the individual coefficients themselves, this un- 
certainty being due mainly to unresolved station-datum er rors  and to the limited sampling of the 
field from observations on a small number of medium-altitude, medium-inclination satellites. 

A s  late as July 1963, Izsak stated (Reference 2): "It might be some time before one can ar- 
rive at definite conclusions regarding the longitude dependence of the earth's gravity field." The 
presence of Syncom 11, high over the earth with a nearly stationary, narrow figure-8 ground track 
centered close to the equator, dramatically alters this gloomy outlook. The 24-hour satellite is 
high enough to be unaffected by the earth's atmosphere, yet is close enough to the earth to be pro- 
tected from the solar wind by the "magnetosphere" of the earth, and to remain essentially unaf- 
fected by sun or moon gravity. 

In theory, as the ground track is nearly stationary, any small earth-gravity anomaly in longi- 
tude will  in time, cause significant drift of the ground-track configuration. In theory too, only 
observations of the longitude of the satellite from a single ground station are necessary to reveal 
this effect of the "tesseral" gravity field over an extended period of time. Long-term observa- 
tions of the longitude drift of one or more 24-hour satellites should reveal the exact nature of the 
tesseral-gravity field to at least the third order without essential difficulty. The great height of 
the 24-hour satellite tends to cancel out the individual contributions to the longitudinal drift of 
anomalies higher than about the fourth order. It is fortunate that the initial slow westward drift 
of the ground track of Syncom 11 (August 1963 to March 1964) appears to have occurred relatively 
close to a point midway between the triaxial earth's major and minor equatorial axes where the 
perturbation of the second tesseral-gravity anomaly, for which the reduction was made, is great- 
est. A weighted average of the longitude-perturbation fields of Kozai (1962), Zhongolovitch (1957), 

1 



Kaula (September 1963), and Izsak (July 1963), at the altitude and longitude of Syncom I1 during 
this period, shows that the second tesseral should be contributing about 80 to 85 percent of the 
perturbing force. If further observations of this and other 24-hour satellites confirm this esti- 
mate, then the magnitude of the dominant J,, potential term, separated from higher order effects, 
wi l l  increase by 25 percent at most from the value reported here, which is based on the assump- 
tion that only the triaxial earth-gravity field is being measured by the drift observations. The 
reported location of the major equatorial axis of the triaxial earth ellipsoid is not expected to 
change significantly with this later refinement. 

In summary, long-term observations on the drift of Syncom II have already established to a 
high degree of certainty that: 

1. The earth must be considered to be a "triaxial ellipsoid" (for example, having a sea-level 
surface of this form) for the purposes of 24-hour satellite design. (For broader geodetic 
purposes; a significant longitude dependent gravity field exists, defining: 
2.2 X < I J z z  1 < 1.6 X -25" < X,, < -13".) 

2. The difference between the major and minor equatorial radii of that ellipsoid is not less 
than 200 feet nor greater than 225 feet. 

3. The location of the major equatorial axis of the "triaxial geoid" is between 13 degrees and 
25 degrees west of Greenwich. 

It may be added that the study of simulated 24-hour satellite drift in a triaxial earth field, influ- 
enced also by sun and moon gravity and by sun-radiation pressure perturbations, shows that the 
theory of longitude drift presented in this report is substantially unaffected by all perturbations 
except that due to the earth's elliptical equator and possible higher order longitude-dependent 
earth-gravity anomalies. 

1. BASIC THEORY OF THIS REDUCTION 

(Determination of the Longitude Drift and Orbit Expansion for a 24-Hour Satellite With a 
Near-Circular Orbit Affected by a Small But Persistent Tangential Per rbing Force.) /G 

The dominant perturbations of a 24-hour equatorial satellite in a higher order earth-gravity 
field have been derived many times in the literature (References 3, 4, 5, and 6). In these refer- 
ences, the perturbations were found by directly linearizing the equations of motion themselves and 
displaying the perturbed motion in appropriate geographic coordinates; no attempt w a s  made to 
treat the drift of the inclined 24-hour satellite. 

In this report, I will depart from this rather involved and difficult-to-visualize procedure of 
linearization-of-the-equations-of-motion. Instead, I will show how simple it is to derive the 
dominant drift and orbit-expansion equations for the 24-hour satellite by dealing with what can be 
called "the perturbation of the 2-body energy" of the geographically stationary satellite by the 
small but persistent longitude-dependent earth-gravity force. This paper will not discuss in 
detail the limits of validity of the expressions derived. Instead, to assess the accuracy with 
which these expressions predict the satellite's behavior, simulated trajectories with typical 
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Syncom 11 orbit elements have been run on Goddard's particle program TTEW: . These tra- 
jectories (Appendix A) confirm the validity of the derived drift equations to an accuracy well  
within the "noise levels" in the orbital elements reported for Syncom II. The equations are es- 
sentially the same as those which P. Musen has derived by a more general but more complex 
"energy perturbation" method (Reference 7). 

In Figure 1, F is a small earth-gravity perturbation force acting tangentially to an initial cir- 
cular 24-hour satellite orbit; ds is a small a r c  length of the satellite's path around the earth. 
At the beginning of the dynamics? the total 
energy (the sum of potential and kinetic) of the 
satellite in a spherical earth-gravity field (Re- 
ference 8) is 

WE 
E = - q  

where pE is the earth's gaussian gravity con- 
stant (3.986 X 10 s km 3/sec '). The energy added 
to the satellite by F per day is 

*SCPH)ING WDE 

MRECTION 
F 

where F = (1/2n) f FdB . F ? in units of force 
per unit mass, is the orbit averaged energy 
perturbing force. If the orbit is purely circu- 
lar, only a tangential perturbation force can 
cause a change in the total energy. The ITEM 

Figure 1-Orbit plane of a 24-hour satellite, 
looking southerly. 

simulated trajectories in Appendix A and the real Syncom II orbits both maintain eccentricities 
of the order of 0.0001 for periods up to 100 days. Equation (2) assumes the eccentricity is zero 
for the 24-hour satellite of semimajor axis as. 

From (l), the change in energy of a 24-hour satellite is accompanied by a change in semi- 
major axis expressed by 



Substituting (2) into (3), the change in semimajor axis of the 24-hour near-circular orbit, per day, 
is approximately given by 

From Kepler's third law, the period of a 24-hour orbit as a function of its semimajor axis is 

Thus, i f  the semimajor axis changes by n a p ,  the period change is given by 

Substituting (4) into (6), the change in period, per day, of a 24-hour circular orbit is given by 

1 k 2  F 
ATs = 

( P E y 2  

The apparent net longitudinal drift rate of the 24-hour satellite's ground track with respect to the 
surface of the earth after the first sidereal day is 

(radians/sidereal day) A ( t  = 1 sidereal day) = - ___ 
(q 

TS 

(See Reference 9 for example). The minus sign is taken in (8) because a gain in period is accom- 
panied by a decrease in net geographic longitude for the initially 24-hour satellite (for example, 
for the daily geographic position of the ascending node). Combining Equations (7) and (5) in (8) 
gives 

(rad./sid. day) . 127P F x (t = 1 sid. day) = - 
FE/l%)* 

(9) 

As the gain in semimajor axis is small over one day (and, in fact, small compared to as,  for 
the entire libration period of the satellite in the triaxial earth field), the drift rate will  continue 
to  build up linearly with time initially, adding increments of (9) each day. Thus, the net longitudi- 
nal drift  acceleration of an initially 24-hour satellite is 

(rad./sid. day ' ) .  A = -~ 
l M F  

s 
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Rewriting (4) as 

F 
a -  . -  , (length units/sid. day) h 

gives the expansion rate of the initially 24-hour near-circular satellite orbit due to a small but 
persistently acting orbit-averaged tangential perturbing force F . 

2. EVALUATION OF THE PERTURBING FORCE 

Figure 2 shows the position of the 24-hour satellite with respect to the earth and the celestial 
sphere. Fr , F+ and FA, earth-gravity perturbing forces in the radial, latitude, and longitude di- 
rections, are assumed to be acting on the satellite at s . Considering only the earth-gravity per- 
turbation forces arising from the ellipticity of the earth's equator (Reference lo), Appendix B 
gives these forces as 

NORTH 

PROJECTION OF ORBIT PLANE 

SPHERE 
F SYNCOM IT ON CELESTIAL 

I 
I.... L. P . I\ 

GREENWICH MERIUAN 
AT TIME t 

GREENWICH MERIDIAN 
ATTlME ZERO 

REAT CIRCLE OF 

?% ELESTIAL EQUATOR 

Figure 2-Position of a 24-hour satellite with a near-circular orbit with respect 
to the earth and the celestial sphere. 
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{6J,, c o s 4 s i n q t  cos 2 ( A - A , , ) }  9 

i”E (Ro/aJ 

( a s ) ,  
F+ = 

As long as the orbit is nearly circular, Fr will have negligible contribution to F. The contribution 
to F from F+ is: 

K is a constant for a single orbit. 

In the right spherical triangle AN, s , L ,  note the following trigonometric relations: 

tan  AL 
cos ( i )  - t a n e  ’ 

- t a n g  a’ cos a - 

s i n 4  s i n ( i ) s i n B  , 

cos ( i )  
c o s 4  * 

s i n a  = 

From (15A), 

AL = tan-’  [ t a n e c o s  ( i ) ]  . 

Let the geographic longitude of the satellite at the ascending node ( A N )  be A,. Counting time 
from this orbital position, the geographic longitude of the 24-hour satellite at s in its near- 
circular orbit is 

A = A, t AL - & b e t  ‘(Figure 2) 

or, using (16), 

A = A, + tan-’  [ t a n ~ c o s ( i ) ]  - GCt . 
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we is the earth's sidereal rotation rate. For the 24-hour satellite (starting the dynamics with 
S. at A.N., for convenience), 0 we t , so that (17) becomes 

A = A, + t a n - ' [ t a n e c o s ( i ) ]  - e , (18) 

approximately. The function tan-' [tan e cos ( i ) ]  - e  is even about e = 0 and 0 = n / 2 ,  with a 
period of n, and behaves like a somewhat distorted sine function (Figure 3 and Appendix C). Call 
this function M and note that for i < 33 degrees, M is always less  than 5". Thus, using (18) and 
assuming i is sufficiently small (i < 45" proves to be a sufficient restriction on the inclination), 
COS 2 (A - A,, ) for the 24-hour satellite can be approximated by 

cos 2 (A - A ~ ~ )  5 cos 2 (ho - A ~ ~ )  - 2~ s i n  2 (A,  - A ~ ~ )  = - cos 2yo t 2~ s in  2yo . (18A) 

Similarly, s i n  2 (A - A Z 2 )  can be approximated by 

s i n  2 (Ao  - A z z )  + 2M cos 2 (A,  - A Z 2 )  = - s in2y0 . - m c o s  2y0 5 s i n  2 ( A  - (18B) 

In Figure 3, yo  is the geographic longitude of the node of the 24-hour nearly circular satellite 
orbit with respect to the minor equatorial axis. With these expansions [(18A) and (18B)], and using 
(15B), (14) becomes 

s i n  4 cos q5 tan q5 
'(4) = t a n 6  {-cos w0 + 2~ s i n  5,) * 

Using (15C) in the above expression, the con- 
tribution to the perturbing force F due to F+ 
becomes 

Writing M 5 M (max) s i n  26 , (19) becomes 

s i n  20 
F(+) 5 K s i n 2 ( i )  [-cos 2 y o ]  7 

- K sin2 ( i >  M (max) [ s in  eo sin2 2e] (20) 

Figure 3-Geographic subsatellite track of 24-hour 
satellite in a neor-circular orbit. 
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The contribution to F from F A  is 

F(M F A c o s ( 9 0 - a )  = F A s i n a  = K s i n a c o s ~ { - s i n 2 y o - 2 M c o s 2 y o }  9 (22) 

from (13) and (18B). Using (15D) in (22), and noting that M 

contribution to F from F A  as 
M (max) s i n  28, as before, gives the 

F(w = K c o s ( i )  { - s i n 2 y o - 2 M ( m a x ) s i n 2 B c o s ~ o }  . (23 1 

Averaging F(A) over 0 5 B I 2 n ,  (23) gives 

- 

(24) F(*) = - K c o s ( i ) s i n 2 y o  . 

Thus, combining the contributions of the latitude and longitude perturbations to the average 
perturbation force over a single 24-hour orbit, (21) and (24) sum to produce 

- 
F ( t o t a l )  - - -  s i n 2 ( i ) M  (max) 

3.  COMPLETION OF THE DERIVATION OF THE DRIFT EQUATIONS 

Appendix C shows that 

It is also shown there that, to a high degree of accuracy for i < 50°, 

s i n 2  M (max) 
2 cos ( i )  + 

Numerically integrated orbits have shown that the drift theory for a 24-hour satellite stemming 
from (25) is in error by more than 2 percent for i > 45". With this restriction on orbit inclina- 
tion, using the above approximation for the inclination factor, we can rewrite the longitude drift 
and orbit expansion equations (10) and (ll), evaluating8 by (25), giving 

12nZK cos2  i [ (2 ) ' '1 s i n  5, , (rad./sid. day ') .. - Y -  

a - -  - 

s i n  2y0, (length units/sid. day) . 

a 



Substituting (14A) into (26) and (27) reauces these expressions to 

( i )  + 1 i; 7%’ J Z z  (RO/as), [+I s i n  2yo , (rad./sid. day2) 

. -  a -  
i + 1  - 24n J,, (Ro/a,) R, [cDs2 ( 2 )  ] s i n  2yo,  (length units/sid. day). 

Define a nondimensional change of semimajor axis from as during the drift as 

; sothat,  a, = -2- . &I 
a - as 

_ -  a l  = - -  
a* a s  

With (29A), (29) becomes 

s i n  * o  , (l/sid. day). (30) 

Define: 

A,, = - , (rad./sid. day2). 

With (30A), (28) and (30) become; 

i; + A,, s i n  2y0 = 0 , (rad./sid. day2)  (31) 

A,, s i n 2 y o  
a1 - 3n = 0 , (l/sid. day). 

Note that n in (32) has dimensions of rad./sid. day. It must be understood that (31) describes 
the net daily geographic acceleration of the initially 24-hour satellite with respect to the earth’s 
minor equatorial axis. Stated another way, (31) describes the geographic drift of the entire 
originally stationary, figure-8 ground track (Figure 3). Similarly, (32) describes the net daily 
orbit-expansion rate of the 24-hour satellite. In particular, it is convenient to treat the motion of 
the ascending node of the orbit in geographic longitude as a reference for the entire configuration. 
In what follows, therefore, y will  refer always to the geographic longitude of the ascending node 
east of the equatorial minor axis; yo will  refer to the initial geographic longitude of the A.N. east 
of the minor axis, at the start of the dynamics under consideration. (31) and (32) can thus be re- 
written in terms of the general nodal longitude position y, to give the relevant partially uncoupled 
long-term drift and orbit-expansion differential equations for the near-24-hour near-circular 
orbit satellite: 

i; + A,, s i n  2y = 0 , (rad./sid. day2) (33 ) 
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A,, s i n  2y 
a1 - 377 = 0 , (l/sid. day). 

4. GENERAL CONSIDERATIONS OF THE SOLUTIONS OF THE DRIFT EQUATIONS 

Equation (33) can be integrated directly for  the geographic drift rate by noting that 

Thus (33) can be separated to 

d( j )2  = - 2A,, s i n  2 y d y  

Since the variables (?)’ and y are separated in (35), (35) integrates to 

(?)’ = A,, cos 2y + C, . 

(34 1 

(35) 

With the initial condition that 9 = +, at y = y o ,  (36) becomes 

1/ 2 
? = [(?o)z +A,, (cos 2y-cos  2 y 0 ) ]  , (37) 

giving the drift rate of the 24-hour satellite as a function of the initial drift rate +,, the earth- 
gravity constant A, ,, the initial longitude east of the minor axis y,, and the instantaneous longi- 
tude Y . Returning to the semicoupled system of equations (33) and (34), the explicit dependence of 
the equations on the location from the minor axis and the magnitude of the equatorial ellipticity 
may be eliminated by multiplying (33) by 1/3n and adding the resulting equation to (34), giving 

i ; +  h a ,  = 0 1 (38) 

(38) can be rewritten as 

dg + hi, = 0 = d ( 9 )  t 3 r a l d t  = d ( 9 )  t 37rd(al)  . (39) 

Separation of the variables ? and a l  is thus achieved in (39). (39) integrates directly to 

With the initial conditions: a ,  = 0, when i. = 0 (the satellite is in the momentarily stationary 
ground-track configuration); C, = 0. If yo  in (37) is also the longitude of this initially stationary 
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I "  

orbit, (To)' = 0 there, and (37) in (40) yields for a , ,  the semimajor axis change from "synchron- 
ism" in the drift motion, 

(q,y (cos 2y - cos 2y,)'R 

377 a l  = k 

(41) shows explicitly that the semimajor axis is bounded in long-term drift from a stationary 
orbit. From (33), since A,, > 0, if 0 < yo < go", drift proceeds towards the nearest longitude of 
the earth's equatorial minor axis (in a - y direction). If -go"< yo  < 0", (33) shows that drift again 
proceeds toward the nearest minor axis longitude (in a fy direction). Thus, in all cases of drift 
from a stationary geographic configuration, COS 5- COS 2yo is a positive function which has a max- 
imum when y = 0 (when the satellite has drifted over the longitude of the minor axis). Thus (41) 
gives (for the librations of a 24-hour satellite) 

a l  (rnax) = 1 ~ 1  A,,)", (1 - cos 2y0)  'I2 * 

Again it is noted that n in (42) has units of rad/sid. day. An absolute maximum semimajor axis 
change in the drift occurs when the "synchronous" condition is established near the longitude of 
the major equatorial axis. Here, yo = -goo, COS w0 = -1, and 

(%2) 1/2 
a , (absolute maximum for a librating 24- hour satellite) = -7 (43) 

For the constant J,, = - 1.7 X (derived in this study from long-term observations on the 
drift of the Syncom II satellite) and using the additional constants from this study: i = 33", 

a s  42166 km, R, = 6368.388 km; (30A) gives 

A,, = 23.2 x (rad./sid. day2) . 

(43) then gives 

a l  (absolute max.) = .72 X lP3, from which, by (29A), 

Aa  (absolute max. from a "synchronous" condition near 
the equatorial major axis, for a satellite of i = 33") = 30.7 km . 

Thus the assumption made in (10) and (ll), to approximate the slightly varying semimajor axis by 
as (a constant) throughout the drift motion, appears amply justified. 

Figure 4 is a graph of (41) for a ,  vs. y (the longitude with respect to the nearest minor axis 
location) as a function of yo,  the longitude in the initially stationary configuration. 
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I 
CIRCULATION PATH FOR 
ENERGY CONSTANT 

Ci. - A 2 2  COS 2ye 

MAJOR 
EQUATOR I AL\ 

AXIS 
R EQUATORIAL 

CIRCULATION PATH 
WITH MAX. ENERGY 

-(Ci=A22) FOR A 
LIBRATING 24 

AX1 S 0 90. HOUR SATELLITE 

Figure 4-Libration w i th  longitude of the semimajor axis of a 24-hour satel l i te as a 
function of the longitude of  the i n i t i a l l y  stationary configuration. 

Note that (41) allows equal f values for a l  for each y .  Suppose the satellite is initially at +yo 

(position 1 in Figure 4) from the nearest location of the minor axis: From (33), sin 27, being posi- 
tive, the satellite begins to drift wes t  (attaining a negative drift rate) towards the minor axis. But, 
from (40), since c, = 0, a, = - ( + ) / 3 n  > 0;  the drift therefore proceeds counterclockwise in Fig- 
ure 4, around the central point of the minor axis and a l  = 0, along the upper portion of the two- 
valued arc determined from (41). 

The same situation holds for the motion beginning or  stemming away from the "synchronous" 
longitude at -yo , position 2 in Figure 4. Here sin 2y0 is negative, and the drift proceeds at a posi- 
tive rate to the east. Again from (40), as soon as the satellite leaves position 2, a l  = - (+)/37~ < 0, 
and the circulation continues in a counterclockwise direction. Every trajectory in the phase plane 
a , e y may be conveniently defined by the constant C, of the "energy integral" of the drift motion 
(36). Since (33) is the equation-of-motion defining the large-angle oscillations of a mathematical 
pendulum (in the case of the 24-hour-orbit satellite, the point of symmetry is the minor axis where 
2y = 0), it can be expected that the general solutions in that theory apply to the long-term libra- 
tions of the "synchronous satellite" (Appendix D). For example, in (36), with a momentarily 
"synchronous" condition at yo being given by +o = 0, the "energy constant" is evaluated as 

V 

c, = - A,, cos 5, . 
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With this evaluation, (36) becomes 

(7)' - A,, cos 2y - AZ2 cos 2yo , (44 ) 

. 

Solving for the initially "synchronousf1 longitude as a function of any longitude in the drift and the 
corresponding longitude rate, (44) gives 

l [  (+),I 1 2  
y o  = ~ c O s - 1  cos 5 -  A - (45) 

Since (?)TA, '  2 0, the argument of c0s-l in (45) is always less than or  equal to 1. Thus, as long 
as COS 2y - ( + ) T A , ,  2 - 1, (45) will  give a real solution for the momentarily l'synchronous" longitude 
with respect to the minor axis. But, if  C O S  2y - ( + ) y A , ,  < - 1, there wil l  be no real momentarily 
"synchronous" configuration for the near-24-hour satellite. With this energy, the world- 
circulation regime commences, corresponding to the over-the-top, high-energy regime of the 
mathematical pendulum (Reference 3). The above inequality implies that, for the commencement 
of "world circulation" for the near-24-hour satellite, 

(7)' 2 2 A , ,  c o s ' y  . (46 1 

When 27 = 0, or the satellite is over the minor axis, (46) allows the maximum possible drift rate 
for a librating 24-hour satellite: 

?(max)for libration = ( 2A22)VZ  , (rad./sid. day) . (47 1 

For example, using the reported value of A,, = 23.2 x 
the Syncom 11 satellite, (47) gives 

rad./sid. day' for the inclination of 

= (46.4 x )v2 = .39 degrees/day. (48) 
'(max)for libration with J,, = -1.7 X i = 33' 

5. APPROXIMATIONS TO THE EXACT DRIFT SOLUTIONS FOR PERIODS VERY CLOSE TO 

SYNCHRONOUS 

Expanding the drift from the "synchronous1' longitude ( y  = yo in this section) in a Taylor 
series, with respect to increments of time At  from the momentarily stationary condition, 

(At)' ... (At)' , , [4 y(At)  = yo + j 0 A t  + r o T + Y o  T f ? o  

13 



Differentiating (33) six times with respect to time, it is clear that all derivatives in (50) can be 
written as functions of A,, , yo  and +,. Noting that r ( A t  ) - yo  = M (the geographic longitude with 
respect to the "synchronous" configuration) and +, = 0, (50) can be shown to reduce to the 
expansion 

It is apparent that, as A t  - 0, the higher order terms of (51) become increasingly more insignifi- 
cant to the total.drift, in comparison to the terms of lower order. 

In Appendix D, the exact "elliptic integral" of motion from (33) is calculated from a syn- 
chronous longitude of 60" east of the minor axis. This calculation demonstrates that the simple 
term-inclusion- time criterion below gives an adequately converging series to the "exact" drift. 
In the actual reduction, all higher order terms in (51) which a re  less in magnitude than the root 
mean square (rms) error of the observed Syncom II longitudes, are ignored. Section 7 of this re- 
port shows that this rms error  of longitude determination for the ascending equator crossings of 
Syncom 11 from August 1963 to March 1964 has been of the order of ~ 0 2 5  degrees. Thus, 0.025" 
is used below in forming the minimum-time-term-inclusion criterion for each term of (51). 
A,, is assumed to be 23.2 x rad./sid. day2. 

A) For inclusion of the ( A t ) 4  term: 

I s i n  4y01 is maximum when yo = k22.5" and k67.5" . 

Therefore, 

2 ( A t > 4  /Ahmax (from the fourth-order term)I = (A,,) * 

Solving (52A) for A t ,  when (Mmax (4th order))  = .025", 

1 /4 

A t  (min. fourth-order term inclusion) = (.025 x 24/57.3 x [23.2 x 

= 66.5 sid. days from "synchronism" . 

B) For inclusion of the ( A t ) 6  term: 

1 s i n  2yo (4  s i n '  2y, - 1)  I is maximum when yo  = *45". 

Therefore, 

( A t > 6  1Mmax (from the sixth-order term)(  = (A,,)3 60 . 

. 



Solving (52B) for A t ,  when /ah,a, 

A t  (min. for sixth-order term inclusion) = (.025 x 60/57.3 x [23.2 x 

(sixth order)]  = .02507 

1/6 

= 113. sid. days from "synchronism" . 

C )  For inclusion of the ( A t ) *  term: 

1 s in4  yo (34 sin' 2yo - 1) I is maximum when y o  = *59 W o .  

Therefore, 

(52C) 
( A t  )* 
1o080 IMma, (from the eighth-order term)\ = 21.2 

Solving (52C) for A t ,  when IMmax (eighth order) I = .025", 

A t  (min. for eighth-order term inclusion) = (10080 X .025/21.2 x 57.3 x [23.2 x lW6]') 

= 171. sid. days from "synchronism" . 

1 / 8  

Similarly, expanding a l  ( t )  in a Taylor ser ies  about the time of "synchronism", (to , yo) :  

But, from (34), 

Differentiating (53A) with respect to time, 

since To = 0. Differentiating (53B) with respect to time, 

- 4(T0)' A,, s i n  27, 27, A,, cos 2 y o  - - (A,$ s i n  4-yo 
- 

371 + 371 3n (54 1 (zl)o = 

using equation (33). From the conventional definition of a l ,  ( a l ) o  = 0. (53) then becomes 

(A22 s i n  2 y o ) A t  (A,,)' s i n  47, ( A t ) 3  
(54N 

+ ... . 
3n 1871 a l  (at A t  from "synchronism") = 

with the results of (53A), (53B), and (54) in (53). 
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Section 7 shows that the rms  e r ro r  of semimajor axis determination for Syncom I1 (including 
sun and moon "noise") is of the order of k0.5 km. Therefore, the r m s  e r ro r  to be expected in a l  

is of the order of .5/42166. = 1.185 X 

1.185 x is used below to determine the minimum time for the inclusion of the terms beyond 
the first on the righthand side of (54A), to ensure adequate convergence of the infinite series for 

Following the procedure for the longitude drift, 

a1 ( A t > -  

A) For inclusion of the ( A t ) 3  term: 

I s i n  4y01 is maximum when yo  = *22.5" and h67.5" . 

Therefor e, 

[from the third-order te rm of (54A)Il 

Solving (55) for A t ,  when ( a l  (max)/ = 1.185 X 

1.185 x x 1% 1/3 

23.2 X lo-" 1 A t  [min. for the third-order term inclusion in (54A)l = 

(55) 

= 108 sid. days from 
synchronism . 

From a "synchronous" configuration at 54.8" west of Greenwich, on o r  about 6 September 1963, 
Syncom II drifted to 59.2" west of Greenwich on 28 November 1963, where it was "stopped" by the 
tangential firing of on-board cold-gas jets. A second free-drift period followed from a "synchron- 
ous" configuration at 59.2" west on about 29 November 1963, to 66.3" west on 18 March 1964, 
where the on-board tangential jets were fired to speed up the westward drift. Of the 34 separate 
orbits calculated by the Goddard Data and Tracking Systems Directorate for these free-drift 
periods, only 7 fell outside the minimum 66-day period around a condition of "synchronism", for 
which the inclusion of higher order terms in (54A) would be necessary in reducing the drift data 
according to that theory. The data reduction of Section 7 includes only those orbits falling within 
the minimum 66-day period around "synchronism". Further refinement of this reduction to in- 
elude the 7 outside-of-synchronous orbits (according to the criterion of this chapter), will be made 
in the near future. This refinement is not expected to materially affect the results of this report. 

, 

6. DETERMINATION OF EARTH-EQUATORIAL ELLIPTICITY FROM TWO OBSERVATIONS 

OF DRIFT ACCELERATION AT A GIVEN LONGITUDE SEPARATION 

Given two independent near-synchronous drifts  (in the sense discussed previously), whose 
momentarily synchronous longitudes (yo)  and ( y o ) 2  a r e  separated by VY. Let the two drift 
accelerations at these two "synchronous" configurations be (To) and . The drift ac- 
celerations may be determined from drift-data reduction according to the theory of (51). 

16 



From (33), 

= - (Azz)z  s i n  2 yo t V h  , [ ( )  1 
since [ - (yo)l = LA. = (;L.o)z - ( X o ) l .  Expanding (57) and dividing by (56) gives 

Solving (58) for , 

[f$j raj = cos 2Vh + s i n  2Vh cot 2(y0)1 . 

7 

(56) 

(57) 

The quadrant of (yo), is either the first or  the fourth, because drift acceleration is always in 
the direction of the nearest longitude extension of the earth's minor equatorial axis. Once the 
minor axis is located by (59), the absolute value of Jzz  in the earth's triaxial gravity field can be 
determined through (56) and (30A), for example, as 

Note that the units of (yo)l in (60) must be those of radians/sidereal day2 so that J z z  will be di- 
mensionless. Note also that in (59), using the result of (30A), 

Using (59), since (Ao) 

chronous" configuration), the geographic longitude of the nearest minor axis location can be 
calculated as 

is known from the data reduction (the geographic longitude of the "syn- 

Similarly, the geographic longitude of the nearest major equatorial axis location can be calculated 
from 

h z z  = (h0)' - (YO)' 900 . (GIB) 

(See figure 3). 
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Following the theory of Reference 10, the difference in major and minor equatorial radii of 
the earth's triaxial geoid (ao - bo) ,  is related to the gravity constant J *, by 

a. - bo = - 6R0 J,, . (62) 

7. REDUCTION OF 27 SYNCOM II ORBITS TO DETERMINE THE EARTH'S EQUATORIAL 

ELLIPTICITY 

Appendix A tabulates the 27 Syncom 11 orbits from which the reduction below was made. 
Table 1 gives the estimated ascending equator crossings nearest to the epoch of these orbits. 
These were calculated by hand, and therefore are listed only to 0.01 degrees and 0.01 days. The 
technique used was to locate from the Nautical Almanac, the geographic longitude of the ascending 
node at epoch through the reported right ascension of the ascending node for the orbit, and the 
hour-angle of the vernal equinox calculated at epoch. The geographic longitude of the ascending 
equator crossing was then estimated by turning the earth back through the orbit angle from the 
ascending node to the satellite at epoch. This latter quantity was estimated as o - M for the near- 
circular orbit of Syncom 11. A correction factor to this orbit angle - the ratio of the satellite's 
period to the earth's sidereal period - was applied for orbits whose period w a s  sufficiently dif- 
ferent from the earth's. The nodal longitude at epoch, minus this reduced nodal excursion angle, 
is the estimated "ascending equator crossing nearest to epoch" reported in Table 1. (See Appendix 
E for an example of this calculation.) 

Table 2 gives the Goddard-reported semimajor axes for these 27 orbits. Truncating equa- 
tions (51) and (54A) at their first righthand terms: 

(63) ( A t  >, M (longitude drift from "synchronism") - ( A z z  s i n  2yo) 7 

s i n  2yo ( A t )  
a l  (semimajor axis change from "synchronism") 2 A,, 37l (64) 

Let the drift time be given from a certain arbitrary base time by T. Let To be the time of 
"synchronism" from the base time. Let the drift be given from a certain arbitrary geographic 
longitude by A .  Let As be the geographic longitude from this base longitude, of the "synchronous" 
configuration. Then: 

A t  = T - T o ,  and 

a - a s  

a s  
With these changes, (63) and (64) become noting that a l  = -) : 
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First Drift 
Orbit # 

1-1 
1-2 
1-3 
1-4 
1-5 
1-6 
1-7 
1-8 
1-9 
1-10 
1-11 
1-12 
1-13 
1-14 
1-15 
1-16 

Time from 
20'o Aug. 1963 

(days) 

F i r s t  Drift 
Orbit # 

Time from Semimajor Axis: Second Drift 26.0 Nov. 1963 1 Orbit 1 (days) (42160.0 + Data; km) 

1-1 
1-2 
1-3 
1-4 
1-5 
1-6 
1-7 
1-8 
1-9 
1-10 
1-11 
1-12 
1-13 
1-14 
1-15 
1-16 

Table 1 

Estimated Ascending Equator Crossings Nearest the Epoch of 27 Syncom 11 Orbits. 
~ ~~ 

Time from 
20.0 Aug. 1963 

(days) 

2.12 
7.11 

11 .os 
16.08 
20.07 
23.06 
28.05 
3 1.04 
38.02 
42.01 
48.99 
54.97 
62.95 
70.93 
77.91 
83.90 

-100.0 

Ascending Equator 
Crossing in Degrees 
West of 50.0" West 

4.89 
4.83 
4.78 
4.74 
4.77 
4.78 
4.85 
4.90 
5.06 
5.09 
5.45 
5.68 
6.09 
6.60 
7.14 
7.61 

F i r s t  free drift  
period ends at an 
ascending equator 
crossing of "9.15" 
west of 50.0" west. 

Second Drift 
Orbit # 

2-1 
2 -2 
2-3 
2-4 
2-5 
2-6 
2-7 
2-8 
2 -9 
2-10 
2-11 

Time f rom 
26.0 Nov. 1963 

(days) 

1.86 
7.84 

13.83 
20.81 
41.75 
44.74 
55.71 
64.69 
71.67 
76.66 
83.64 

Table 2 

Goddard-Reported Semimajor Axes for  27 Syncom 11 Orbits. 

2.27 
6.71 

11.00 
16.00 
20.00 
23.08 
28.08 
31.08 
38.08 
42.08 
49.08 
55.08 
63.08 
71.00 
78:OO 
84.21 

-100.0 

4.58 
4.52 
6.02 
6.39 
6.35 
6.55 
6.70 
7.42 
7.51 
8.88 
9.14 
9.78 

11.51 
11.09 
12.15 
12.51 

F i r s t  free drift 
period ends with a 
semimajor axis of 
"421 74.5 km. 

2-1 
2-2 
2 -3 
2-4 
2 -5 
2-6 
2-7 
2-8 
2-9 
2-10 
2-11 

2.04 
8.00 

14.00 
20.71 
41.71 
44.25 
55.88 
64.83 
71.67 
76.79 
83.71 

Ascending Equator 
Crossing in Degree: 
West of 50.0" West 

9.17 
9.17 
9.22 
9.38 

10.15 
10.36 
11.02 
11.76 
12.32 
12.81 
13 -49 

Semimajor Axis: 
(42160.0 + Data; km) 

5.89 
7.20 
7.18 
8.17 
8.01 
9.90 

11 .\.I 
11.91 
12.89 
13.31 
14.89 
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(Note that from (65), & = - A,, s i n  27, = To from (33). This result is valid only for orbits sufficiently 
close to "synchronous," as discussed previously.) 

A,, s i n 2 y o  
- a - a s  

(66) and (65) may be written with determinable coefficients as 

- A = do t d , T  + d,TZ 
I 

a e o  + e l T ,  

where: 

TZ A,, s i n  2y0 
d o = h -  -0 2 

A,, s i n  2y0 
d, = - 2 (69) 

To A,, s i n  2y0 
eo - 

s i n  2y0 
e1 = % A 2 2  3n 

From (69), 

To = - d,/2d, , 

(72) 
.. - yo ~ - A,, s i n % 0  = 2d, . 

Alternately, and as an internal check on the theory of the coupling of the drift and orbit expansion, 

.. - yo  - - A,, s i n 2 y o  = 

d, = 3ne1/2as . (73) 
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In equation f13), the units of d, must be radians/sidereal day2, and the units of e l  must be length/ 
sidereal day so that the equation will  be dimensionally correct. The semimajor axis at the ''syn- 
chronous" configuration is calculated from (68) for T = To : 

(74) as eo + e l T o  . 

For the first drift period (orbits 1- 1 through 1- 16), the best estimates (in the "least squares" 
sense) of the coefficients (d), and (e) l ,  obtained by fitting (67) and (68) to the data in Tables 1 and 
2, have been found to be: 

(do)l = (4.941 f .018) degrees 

(dl)l = -(.0216 f .OOlO) degrees/solar day 

(d2)l = (6.37 f .11) x degrees/solar day2 

= (6.33 f -11) X degrees/sid. day2 

(eJ1 = (4.35 f .19) km 

(e& = (-0993 f .:?"42> km/solar day 

(.0990 f -0042) km/sid. day . 

The mean value of the inclination during this period was 

( i ) l  = 33.018 f .005 degrees . 

From (70), 

( T J l  = (16.95 - +1.09) 1-05 days from 20.0 August 1963 . 

From (71), 

( &c) l  = (4.76 f .03) degrees west of 50.0 degrees west  longitude . 

From (72), 

= -(1.27 f .02) X lCJ3 degrees/solar day2 = -(2.20 f .04) x 1U6 rad./sid. dayz . 

From (74) and the above value of ( T o ) l ,  

(as)l = (42166.0 f .2) km . 
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For the second drift period (orbits 2- 1 through 2- ll), the best estimates (in the "least squares" 
sense) of the coefficients ( d ) z  and ( e ) 2 ,  obtained by fitting (67) and (68) to the data in Tables 1 and 
2, have been found to be: 

(do)z = (9.156 f .017) degrees 

(d& = -(.0030 f .0010) degreedsolar day 

(d')' = (6.59 f .11) X 

= (6.55 5 .11) x 

degreedsolar dayZ 

degrees/sid. day' 

(eo)' = (5.70 f .42) km 

= (.0994 f .0080) km/solar day 

= (.0990 f .0080) km/sid. day . 

The mean value of the inclination during this period was 

( i ) z  = 32.851 f .010 degrees . 

From (70), 

(To)z = 2.3 f .8 days from 26.0 November 1963 . 

From (71), 

(A& = 9.15 f .02 degrees west of 50.0 degrees west longitude . 

From (72), 

(Yo)' = -(1.32 f .02) x degrees/solar dayz = -(2.29 f .04) x 1C6 rad./sid. day' . 

From (74) and the above value of (To)2 , 

(aJZ 
= (42165.9 * .4) km . 

(See Figure 5 for a graph of this orbit data and reduction for the two drift periods.) Combining 
the above results of the two free-drift periods, from (61), 

[cos' (33.018 * .005)+ 13 

[cos' (32.851 f .010)+ 13 
= (42165.9 * .4/42166.0 f .2)' 

( A ' J Z  

= .99845 * .00014 . 
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The longitude separation between the two drift periods is given by 

V h  = - (A,)' = [-(59.15 f .02)] - [-(54.76 f .03)] degrees 

= -(4.39 f .05) degrees geographic longitude . 

Thus 

2Vh = -(8.78 f . lo) degrees geographic longitude . 

Therefore, from (59), the location of the minor equatorial axis with respect to the "synchronous" 
longitude during the first free-drift period (54.76 f .03 degrees west of Greenwich) is 

sin [-(8.78 .10u - 

* '02) (.99845 f .00014)- cos [-(8.78 * .lo)] 
(1.27 * .02) 

= 54 :: degrees east of the minor equatorial axis . 

From (61B), the best estimate of the location of the major equatorial axis is 

A,, = - 55 -(54 Ti) + 90 = - (19 T:) degrees geographic longitude . 

From (60), the best estimate of the triaxial gravity coefficient J z 2  is 

-(2.20 f .04) x 10-6  OS., (33.018 f .005) + 1 I 7 2 ~ '  [ i n  2(54 (6378.2/42166.0 f .3)' 2 

5 2 2  = 

The mean equatorial radius, taken as R, = 6378.2 km, is a compromise between a number of cur- 
rently used values. It is stated above without error .  The likely e r ro r  in (as)1 has been increased 
arbitrarily by 0.1 km. to account for the likely uncertainty in R,. 

Using the above estimate of J 22 from observations on Syncom I1 drift, the difference between 
the major and minor equatorial radii of the triaxial geoid is, by (62), 

a. - bo = 64 T! meters = 210 +:'feet. 

Comparing the deviation due to  earth ellipticity with other higher order earth-gravity devia- 
tions (Appendix B and Reference lo), we note that the above figure implies a maximum deviation 
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from the mean earth sphere, due to the ellipticity of the equator, of 

+ 5  
OR, = 105 - 2  feet. 
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LIST O F  SYMBOLS 

J,,, hnm Spherical harmonic constants (order n ,  power m) of the earth's gravity potential 

F A gravity force per unit mass acting on a 24-hour satellite 

B (except in Appendix F) The argument from the ascending node to the satellite position 
for the 24-hour orbit 

a, as 

ds 

The instantaneous semimajor axis, and the "momentarily synchronous'' semimajor axis 
of the orbit of the 24-hour earth satellite. (as, estimated to within 2 km, is 42166 km.) 
A small arc length of a space trajectory 

pE The earth's gaussian gravity constant (3.986 X lo5 km3/sec? ) 

T ~ .  T~ The orbital period for a satellite, and the "momentarily synchronous'' period of a 24- 
hour satellite (i.e., the earth's sidereal rotation period) 

A, r ,  @ Geographic longitude, geocentric radius, and geocentric latitude of the 24-hour satellites 
position 

R, The mean equatorial radius of the earth (6378.2 km) 

i The inclination of the orbit of the 24-hour satellite 

h, The "initial" geographic longitude of the satellite, or the ascending node of the 24-hour 
satellite's orbit at the start of the dynamics under consideration 

we The earth's sidereal rotation rate (.7292115 X rad./sec.) 

t Realtime 

A( ) A smallargument ( ) 

Y, The geographic longitude (positive to the east) of the ascending node of the 24-hour satel- 
lite's orbit with respect to the earth's minor equatorial axis' longitude location, at the 
start of the dynamics under consideration 

y The geographic longitude (positive to the east) of the 24-hour satellite, or the ascending 
node of the satellite's orbit with respect to the longitude of the earth's minor equatorial 
axis 

a l  (a - a,)/as ; a nondimensional semimajor axis change for the 24-hour satellite's orbit, 
with respect to the "momentarily synchronous'' semimajor axis 

27 



The driving function causing drift and orbit expansion of a 24-hour satellite in a "tri- 
axial'' earth-gravity field; a constant for a given 24-hour orbit inclination 

The argument ( 

The argument ( 
for the simulated trajectory) 

The geographic longitude difference between two "momentarily synchronous" 24- hour 
satellite configurations 

The major and minor equatorial radii of the "triaxial" earth ( R o  = 7, according to 
the definition in Reference 10 

The argument of perigee in a satellite orbit: The orbit angle (from the center of the 
earth) from the ascending node to perigee 

The mean anomaly of the satellite in its orbit: The orbit angle (from the center of the 
earth) from perigee to a point M in the orbit, where M = v, t being the real time 
since perigee passage and TP the period of the satellite's orbit 

Determinable coefficients in the drift and orbit- expansion equations (67) and (68) 

The time of "synchronism" from an arbitrary base time of reckoning T 

The inclination factor in the triaxial driving function A,, 

The gravity potential of the earth 

The radial acceleration of the earth's gravity field at the earth's surface, and at the 
altitude of the "synchronous" satellite 

A test mass 

The elliptic integral of the first kind with argument (or amplitude) 4 and modulus k 

) at the start of the dynamics under consideration 

) at a specified location n (except in Appendix A: ( )s; the argument 

a0 + b o  

) 

A The longitude location of the vernal equinox 
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Appendix A 

REDUCTION OF SIMULATED PARTICLE TRAJECTORIES FOR 

EARTH EQUATOlUAL ELLIPTICITY 

Tables A- 1 and A-2 present data taken from a numerically integrated particle trajectory of a 
triaxial earth in the presence of the sun and moon's gravity field. Only perturbed equations of 
motion from a periodically rectified Keplerian reference orbit a r e  actually integrated by the 
digital computer program (called ITEM at the Goddard Space Flight Center). For the 3 months' 
real orbit time of these trajectories, the accumulated truncation and roundoff error in the 
numerical integration is believed to be negligible for the purposes of this reduction. The ini- 
tial position and velocity conditions for these simulated trajectories were the same as those re- 
ported for the "actual" Syncom II orbits 1-2 (for the trajectory of Table A-1) and 2-3 (for the 
trajectory of Table A-2). The program used the earth gaussian-gravity constant 

pE = 3.9862677 x lo5 km3/secZ , 

which is the gravity constant used by the GSFC Data and Tracking Systems Directorate in comput- 
ing the elements of satellite orbits from radar and Minitrack observations. The best estimates 
(in the "least squares" sense) of the coefficients (d), l  and (e )S1 ,  obtained by fitting the drift and 
orbit expansion equations (67) and (68) to the data in Table A-1, have been found to be 

(do),l  = 4.841 * .004 degrees 

(d l ) , l  = -(1.22 f .03) X lo-' degrees/solar day 

(dz)SI = (6.303 f .038) X 10 - 4  degrees/solar day' 

= (6.268 * .038) x 

= 5.45 * 41 km 

= (.091 f -010) km/solar day 

= (.091 f .010) km/sid. day . 

degrees/sid. day' 

( e l ) s ,  

The mean value of the inclination during this first simulated trajectory period was 

( i ) s l  = 33.005 .003 degrees . 
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Table A-1 

Data f rom Simulated Trajectory Beginning with the Elements of Syncom I1 Orbit 1-2. 

( J z z  = -1.68 x 10-6,R, = 6378.388 km, y z z  = -108.0: Input into Trajectory Program) 

Time from 
10.0 Dec. 1963: 

(days ) 

Ascending Equator 
Crossing: 

(Degrees West of 
50.0" West Geog. Long.) 

Time from 
26.709 Aug. 1963: 

(Solar Days) 

Ascending Equator 
Crossing: 

(Degrees West of 
50.0" West Geog. Long.) 

2.390 
8.374 

14.358 
20.341 
26.324 
32.308 
38.292 
44.276 
47.268 
50.260 
53.253 
56.245 
59.237 
62.229 

Semimajor Axis 
(42160.0 + Data; km) 

4.816 
4.783 
4.792 
4.861 
4.954 
5.101 
5.291 
5.537 
5.678 
5.821 
5.975 
6.144 
6.326 
6.522 

Table A-2 

5.27 
7.09 
6.01 
8.12 
7.13 
8.98 
8.31 
9.67 

10.38 
10.03 
9.42 
9.74 

11.09 
11.94 

Inclination 
(32.0 + Data; Degrees) 

1.089 
1.072 
1.056 
1.043 
1.025 
1.019 

.997 

.991 

.983 

.972 

.967 

.966 

.960 

.957 

Data from Simulated Trajectory Beginning with the Elements of Syncom I1 Orbit 2-3. 

(J .)> = -1.68 x R, = 6378.388 km, yz2  = -108.0: Input into Trajectory Program) 
- 

0.823 
5.809 

10.796 
15.783 
20.769 
25.756 
30.743 
35.730 
40.717 
45.704 
50.692 
55.679 
58.672 
60.667 

9.243 
9.351 
9.495 
9.666 
9.885 

10.134 
10.401 
10.708 
11.044 
11.412 
11.830 
12.259 
12.534 
12.724 

Semimajor Axis 
(42160.0 + Data; km) 

6.88 
7.30 
9.41 
8.15 
9.85 

10.60 
9.95 

11.81 
12.18 
11.58 
13.93 
13.11 
13.07 
13.69 

Inclination 
(32.0 + Data; Degrees) 

.881 

.881 

.877 

.864 

.864 

.850 

.842 

.841 

.825 

.816 

.808 

.790 

.785 

.784 

From (70), 

30 

(To),, = 9.68 f .30 days from 26.709 August 1963 



From (71), 

From (72), 

(Ao) = 4.782 T:::: degrees west of 50.0 degrees west  longitude . 

= -(1.261 f .008) x 

= -(2.188 f .013) x 

degrees/solar daf 

rad./sid. day2 . 

From (74) and the above value of (To) , 

= 42166.3 f .4 km . 

The best estimates (in the "least squares" sense) of the coefficients (d)s2 and ( e ) s , ,  obtained by 
fitting the drift and orbit expansion equations (67) and (68) to the data in Table A-2, have been 
found to be 

(do) s2 = 9.224 f .OM degrees 

( d l ) s 2  = (1.830 f .028) X lo-' degreedsolar day 

(d2) sz = (6.501 f .042) X degrees/solar day' 

= (6.465 f .042) x lU4 degrees/sid. day2 

(eo)s, = 7.19 f -37 km 

(e 1) 
= (.111 f -010) km/solar day 

= (.111 f -010) km/sid. day . 

The mean value of the inclination during the second simulated trajectory period is 

( i ) s 2  = 32.836 f .003 degrees . 

From (70), 

(To) sz = -(14.07 f .30) days from 10.0 December 1963 . 

From (71), 

(h0) s 2  = 9.095 ::$: degrees west of 50.0 degrees west longitude . 
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From (72), 

= -(1.300 f .008) X degrees/solar dayZ 

= -(2.257 f .015) x rad./sid. day2 . 

From (74) and the above value of ( To)s2 , 

(aJs2 = 42165.6 f .5 km . 

A graph of these trajectory simulations is seen in Figure A-1. 

Combining the above results for the two simulated trajectories: from (61), 

(33.005 f .003) + 
(32.836 f .003) + 

(A221 s 1 (--- *22) ,2  = [(42165.6 * .5/42166.3 * .4)2] 

= .99840 .00007 

V h  = - ( h o ) s r  = [-(59.095 f . o o ~ ) ]  - [-(54.782 f .OO8)] , 

:. 2DX = -(8.626 .034) degrees geographic longitude . 

Therefore, from (59), the location of the minor equatorial axis with respect to the "synchronous 
longitude" during the first simulated trajectory (54.782 * .008 degrees west of Greenwich) is 

( r 7 

s i n  \-(8.626 f .O34)] 
( l e 3 O o  * 
(1.261 f .008) 

(.99840 * .00007) - C O S  [-(8.626 f .034d 

1 
T t a n - '  

= 52.5 f 2.5 degrees east of the minor equatorial axis . 

From (61A), the best estimate of the geographic location of the nearest extension of the equatorial 
minor axis from the simulated trajectory data is 

( y z 2 ) s  = -54.8 - (52.5 f 2.5) = -(107.3 f 2.5) degrees geographic longitude . 

This compares well with the input value of ( Y ~ ~ ) ~  = -108.0' used to compute the simulated trajec- 
tories. From (60), the best estimate of the triaxial gravity coefficient J 2 2  from the simulated 
data (according to the theory of this report) is 

I 1  -(2.188 .013) X 

['"s' (33.005 f .003) + 1 
2 ' 7 2 ~ '  [s in  2(52.5 * 2.5)] (6378.388/42166.3 f .4)' { ( J 2 2 ) *  = 

= -(1.64 .03) X . 
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The mean equatorial radius used in the simulation is R; = 6378.388 km, the same used to compute 
the "actual" Syncom 11 orbits from the radar and Minitrack observations. 

The above value of ( J Z 2 ) ,  compares reasonably Well with the input value of ( J ~ ~ ) ~  = -(1.68) 
x used to compute the simulated trajectories. 

The model error implicit in the difference between the reduced and inputed geodetic coeffi- 
cients for the simulated trajectories warrants an adjustment of the J,, and A,, reported in Sec- 
tion 7 from the reduction of the "actual" Syncom II orbits. The values below appear sufficient to 
cover all the known uncertainties of this reduction for a triaxial earth: 

J,, (actual-adjusted) = -(1.70 f .05) x 

A,, (actual-adjusted) = - (19 f 6) degrees geographic longitude 

As  Appendix B will show, the principal unknown uncertainty of the reduction is the possible in- 
fluence of higher order earth tesseral anomalies on the drift of Syncom II. When all relevant 
higher order anomalies in the earth's gravity potential a r e  evaluated, the adjusted values above 
will  probably remain representative for an "average" triaxial potential field sufficient to consider 
for the future design of synchronous satellites. A s  a guess, the author would increase the upper 
limit of J,, to about -(1.80) X (based on some of the recent gravity potentials in Appendix B) 
for design purposes, based on an "average" triaxial geoid. A lower limit of J ~ ,  = 1.60 x 
for this purpose appears justifiable. The variance in the location of the major equatorial axis for 
the "average" triaxial geoid is not likely to change appreciably from the value quoted for the 
adjusted figure. The author is presently studying these higher order earth-gravity effects. The 
accumulated influence on synchronous satellites of all higher order earth anomalies, is believed 
to be small compared to the 2nd order anomaly. But it appears that close and continuing observa- 
tions on the drift of these satellites will  be rewarded in time by revelation of manypf these 
"tesseral" anomalies to about 4th order with an absolute precision almost as good as that reported 
here for the 2nd order effect. 
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Appendix B 

THE EARTH GRAVITY POTENTIAL AND FORCE FIELD USED IN THIS REPORT: 

COMPARISON WITH PREVIOUS INVESTIGATIONS 

The gravity potential used as the basis for the data reduction in this study is the exterior 
potential of the earth derived in reference 10 for geocentric spherical coordinates referenced to 
the earth's spin axis and its center of mass. The infinite ser ies  of spherical harmonics is 
truncated after J,,. The nontesseral harmonic constants J z o  , J 3 ,  and J4, are derived from ref- 
erence 13. 

The earth radius R, used in this study is: 

R, = 6378.388 k m .  

The earth's gaussian gravity constant used is: 

= 3.9862677 x lo5 km3/secZ . 
Neither of these values, taken from reference 14, nor the "zonal geoid" of Reference 13, is felt to  
be the most accurate known to date. They a r e  the values used by the GSFC Tracking and Data 
Systems Directorate to calculate the orbit elements of Syncom II from radar and Minitrack ob- 
servations. They were chosen to insure consistency between the data of this study and these pub- 
lished orbits, inasmuch as the "triaxial" reduction for which this study has been undertaken is not 
significantly affected by the probable e r ro r s  in these values. The second-order tesseral  harmonic 
constants used in the simulation studies were 

J,, = -1.68 X 

A,, = -18". 

These are the values shown on the "tesseral geoid" below (for the J,, harmonic). At  a later point 
in the analysis, the slightly different values reported in the abstract were estimated. The most 
accurate "zonal geoid" is probably that of Kozai (1962) [See Reference 61, with the following earth 
constants; 

R, = 6.378.2 km 

= 3.98603 x lo5 km3/sec2 . 
The earth's gravity potential (to fourth order, probably sufficient to account for all significant per- 
turbations on a 24-hour satellite) may be illustrated as follows (following Reference 6, Appendix B): 
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The earth-gravity field (per unit test  mass) whose potential is (B-1) is given as the gradient of 
(B-1), o r  

dVE dVE 3 dV, 
F = sr + ;cF, t @+ = WE = F a r + - -  r c o s 4  dh + T x  ' 

or  

Fr = ~ { - l + ( R ~ / r ) ~  h [3/2Jz0 ( 3 s i n Z + - 1 )  + 9 J z z c o s z + ~ ~ s 2  ( h - A z z )  

t 25/2(R0/r)' J 4 1  (7 s i n Z + - 3 )  c o s + s i n + c o s  (h-h , , )  

t 75/2(RO/r)' J 4 z  ( 7 s i n ' -  1 ) c o s z + c o s 2 ( A - A 4 z )  

-t 525(RO/r)' J4,  c o ~ ~ + s i n + c o s 3 ( A - A ~ ~ )  t 525(R0/r)z J q 4  c0r '+cos~(A-A4,)])  . 

37 



P E  
FA = -p(R,/r)‘ tJ2, c o s 4 s i n 2 ( A - X z 2 )  f 3 /2 (Ro / r )  JJ1 [ 5 s i n 2 4 - 1 ]  s i n ( A - X 3 1 )  

30  (Ro/r) J32 c o s 4 s i n 4 s i n 2  (A-A,,) + 45 (Ro/r) J,, cos2q5s in3 (A-h3 , )  

t 5/2 (R,/r)2J41 [ 7 s i n 2 4 - 3 ]  s i n 4 s i n ( A - A 4 1 )  + 15 (R,/r)’ J,, ( 7 s i n Z + - 1 )  c o s 4 s i n 2  (A-A,,) 
(B- 4 ) 

t 315 (R,/r)’ J,, cos2  + s i n  4 s i n  3 (A - A,,) 

+ 420 (Ro/r)2 J,, cos3 4 s i n  4 (A - A,,)} * 

P E  

r 2  
F4 = -(R,/X-)~ {-3JzO s i n + c o s 4 + 6 J 2 2  c o s d s i n 4 c o s 2  (A-h,,) 

- 3/2 (Ro,/r) J30 ( 5 s i n 2 + -  1) c o s 4  + 31’2 (Ro/r) J 3 1 ( 1 5 ~ i n 2 4 -  11) s i n d ~ c o s  

+ 15 (Ro/r) J 3 2  (3 s i n 2 +  - 1) COS 4 COS 2 (A - ’32) 

t 45 (Ro/r) J,, cos2+s inq5cos3(A-A3 , )  - 5 / 2 ( R , / r ) 2 J 4 0 ( 7 s i n 2 + - 3 )  s i n @ c o s @  

+ 5/2 (R,/r)’ J41(28 s i n 4  4- 27 s i n 2  + +  3) cos ( A - A q l )  

+ 30 (R,/r)’ J,, (7 sin’ + - 4) cos 4 s i n 4  cos 2 (A - 

+ 105 (R,/r)’ J4, ( 4 s i n 2 4  - 1) c o s 2 ~ c o S  3 (h-h, , )  

t 420 (Ro/r)2 J,, cos3  4 s i n  + cos 4 (A - A,,)} . 

(B-5) 

The actual sea-level surface of the earth is to be conceptualized through (B-1) as a sphere of 
radius 6378 km, around which are superimposed the sum of the separate spherical harmonic 
deviations illustrated. To these static gravity deviations, of course, must be added a cen- 
trifugal earth-rotation potential at the earth’s surface, to get the true sea level surface (see Ref- 
erence 10). 

From Table B-1 and equation (B-3), the fourth-order tesseral geoids of Kaula (September 
1963), Kozai (1962), Izsak (July 1963), and Zhongolovitch (1957) have been evaluated for the .longi- 
tudinal perturbation force on a 24-hour satellite with zero inclination at A = -54.75” over the 
earth’s surface (see Table B-2). The harmonics contributing to this perturbation are J 2 2 ,  J,,, 
J,, , J,, and J,,. The results of this comparison are: 
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Table B-2 

Comparison of Longitudinal Perturbation Forces  on 
a 24-Hour Satellite. From Five Tesseral  Geoids. 

I 
Full Field 
Longitude 

Acceleration 

Z hongolovitch 
(1957) 

Kozai (1962) 

Izsak ( Ju ly  
1963) 

Kaula (Sept. 
1963) 

Wagner (this 
reduction: 
March 1964) 

7.71 

1.08 

1.27 

1.77 

2.21 

Ratio of 
Triaxial ( J  ) 

Longitude 
Acceleration 
to Full Field 

Longitude 
Acceleration 
(A = -54.75") 

1.06 

1.28 

1.19 

1.11 

? 

*gs i s  the radial acceleration of earth gravity at the "synchronous" alti- 
tude (9, = 0.735 ft/sec2). 
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Judging from the consistency of the 
acceleration ratios among these investi- 
gators, the "actual" value of J,, (sepa- 
rated from higher order gravity effects) 
is probably somewhat higher than the 
-1.7 x low6 reported herein. All the geode- 
sists reporting in Table B-2 agree that 
the next most influential earth tesseral 
at "synchronous" altitudes over most of 
the equator is J,, . 
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Appendix C 

EXPRESSIONS FOR THE INCLINATION FACTOR 

Equation (25) gives the inclination factor in the drift causing tangential perturbation (due to 
equatorial ellipticity) on a 24-hour satellite with a near-circular orbit, as 

F ( i )  = 
M (max) s in'  ( i )  

2 cos ( i )  + 

Ah(=.) is the absolute value of the maximum longitude excursion of the figure-8 ground track of 
the 24-hour satellite (with a near-circular orbit) from the geographic longitude of the nodes. 

From (18), this longitude excursion function is 

(C-2) M = A - A, = tan-' [cos ( i )  tan01 - 6 

Differentiating (C-2) with respect to the argument angle 0,  the minimax excursion arguments 
a re  found from 

cos ( i )  sec' H d(M)  
1 + c o s 2  ( i )  tan' 8 - ; I 8 = 0 =  - 1  

Solving (C-3) for s i n e  at AA(minimax), 

= sec ( i )  7 

((2-4) in (C-2) gives 

M(minimax) = tan-' [cos ( i )  sec ( i ) ]  - tan-' sec ( i )  

Thus, since only the absolute value of M(minimax) is required, 

M(max) = tan-' [ sec  ( i ) ]  - 45" , 
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where the tan-' is to be taken in the first quadrant. For example: for i = 30", (C-5) evaluates 
the maximum excursion as 

M(max) = 49.1" - 45" = 4 .1" .  

The nodal argument angle at this maximum longitude excursion is 

0 [at M(max)] = k49.1" from the nodes; 

The assumption in (20) that the excursion in longitude from the ascending node could be approxi- 
mated by 

M - M(max)s in28 , 

predicts the maximum excursion argument as 

C[at Ah(max)] = *45" from the nodes. 

This discrepancy in the assumed longitude excursion function is not serious until i > 45", as sim- 
ulated trajectories with variable inclination have borne out. 

(C-5) can be written as 

M(max) + 45" = tan-' [ sec  ( i ) ]  , from which 

for i < 45". Solving (C-6) for M (max), 

approximately . 

Thus the inclination factor becomes approximately 



For example: For i = 30°, 

= .86603 + 4.1/8 x 57.3 = .8750 F(i)from (C -1 )  

The agreement of F( i )  from forms (C-1) or (C-8) is good to the third decimal place as long as the 
inclination is l e s s  than 45 degrees. At inclinations higher than 45 degrees, however, the drift 
theory following (20) begins to break down because M(max) is no longer a small angle. 

. 
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Appendix D 

* 

DERIVATION OF THE EXACT ELLIPTIC INTEGRAL OF DRIFT MOTION FOR 

A 24-HOUR SATELLITE WITH A NEAR-CIRCULAR ORBIT: COMPARISON 

OF THE EXACT SOLUTION WITH THE APPROXIMATE SOLUTIONS 

FOR PERIODS VERY CLOSE TO SYNCHRONOUS 

The differential equation (33) of 24-hour satellite drift is 
analogous to the equation describing the large-angle oscillations 
of a mathematical pendulum (see Reference ll), as in Figure D-1. 

The equation of angular motion of the mass m under the 
constant gravity force mgo is 

.. 
0 1 )  F, = mgo s i n 0  = m(z0) = m ~ i  

(D-1) can be rewritten as 

1 o + (go/l) s i n 6  o . (D-2) 

From the theory developed in Reference 11 (pp. 327-335), (D-2) mgo 
Figure D-1 -Configuration of a 

"mathematical pendulum.'' 
has an integral 

03-31 t (time from 0 = 0) = (l/go)1/2 ~ ( k ,  $) , 

where F(k, &)is the elliptic integral of the first kind with argument (or amplitude) 
@ = s in - '  [sizAn(:i:)/d, and modulus k = s i n 8  (max)/2. 

Equation (33): 

.. 
y + A,, s i n 5  = 0 , 

with maximum libration angle yo ,  can be put in the form of 0 - 2 )  by the transformation of the de- 
pendent variable 

e = * .  
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with the parameter identification 

Y'  Y I' 4 
(degrees) (degrees) (degrees) 

60.0 60 90 
59.003 59.000 81.7967 
58.014 58.001 78.3056 
57.029 56.999 75.5595 
56.051 56.999 73.1938 
55.077 54.996 71.0617 

(D- 4A) 

F 
(rad.) 

2.1565 
1.8730 
1.7564 
1.6671 
1.5923 
1.5265 

(D-4) implies the identification 

- k = s i n y o ,  4 = s i n - '  [ s i n y / s i n y o ]  . (D-4B) 

The pendulum solution (D-3), under the transformation (D-4) and identifications (D-4A) and (D-4B) 
becomes 

t (time of drift libration from y = 0) 

, [ s in- '  s i n y / s i n y o  03-5) 

F(k, $1, in its full integral form, is 

(where k2  = s i n '  y o  , s i n Z &  = s i n Z  y / s in2  y o )  for the drift libration. In particular, when $ = ~ / 2 ;  

then y = yo ; +, = 0, and the pendulum-drift libration has completed a quarter-period. 

Thus, from (D-5) and 0 - 6 ) ,  the full period of the long-term drift libration of the 24-hour 
satellite ground track about the nearest minor equatorial axis longitude is 

J o  

The adequacy of the Taylor ser ies  expansion approximation of the drift motion in &e neighborhood 
of yo ,  given in equation (51), may be tested against the exact drift solution implicit in (D-5). Table 
D-1 below gives the evaluation of F for arguments within 5" of yo  = SO", using the integral tables 
in Reference 12. 

Table D-1 

Exact and Approximate Dr i f t s  of a 24-Hour Satellite f rom a Stationary Configuration 
60" East of the Earth 's  Minor Equatorial Axis. 

yo  = 60" 
~~ ~~ 

A,, = 23.2 x rad/day2 

Y 
(degrees) 

60.0 
59 .O 
58.0 
57.0 
56.0 
55.0 

- 
.2 83 5 
.4001 
.4894 
.5642 
.6300 

- 
41.619 
58.737 
71.846 
82.827 
92.487 



In Table D-1, M is the change in the elliptic integral from the "stationary" configuration at y = 60" 
or 4 = 90". A t  = (l/2Azz) 1/2AF. A,,WaS computed from (30A) with the following gravity-earth con- 
stants and for the inclination of Syncom II: 

R, = 6378.2 km 

as = 42166 km 

J z z  = -1.7 X 

i = 33". 

y' gives the drift position as calculated from the first righthand term of (51) alone (the (At)'term). 
y"  gives the drift position as calculated from the first two righthand terms of (51). The "actual" 
Syncom II drift in mid-August 1963 began, apparently, at a y o  between 48" and 58" east of the minor 
axis. Thus, the 16 orbits chosen for the first  drift period all should be well represented by the 
( A t ) ,  -only theory, within the rms  er ror  of the longitude observations. Similar exact calculations 
for yo = 45", 503 and 55" confirm the adequacy of the (At)'-only theory to apply to the second 
drift-period orbits. They also prove the contention in section 5 that, for reaso-bly small excur- 
sions from "synchronism," the convergence of the Taylor series (51) is adequate if additional 
terms are included only when they become of a certain minimum significance to the total drift. 
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Appendix E 

BASIC ORBIT DATA USED IN THIS REPORT 

Argument 
of 

Per igee 
[degrees) 

The Orbit elements for Syncom II in Table E-1 were calculated at the Goddard Space Flight 
Center from radar and Minitrack observations made during the slow drift periods from mid-August 
1963 to February 1964. 

Right Asc en 
sion of the 
Ascending 

Node 
(degrees) 

A s  an example of the estimation of the ascending equator crossing nearest to epoch, consider 
the orbit geometry at epoch (Figure E-1). 

6 January 1964 at 17.0 hours Universal Time (orbit 2-5) . 

Table E-1 

Syncom II Orbital Elements, August 1963 to February 1964. 

Orbit 
# 

1-1 
1-2 
1-3 
1-4 
1-5 
1-6 
1-7 
1-8 
1-9 
1-10 
1-11 
1-12 
1-13 
1-14 
1-15 
1-16 

2-1 
2 -2 
2 -3 
2 -4 
2-5 
2 -6 
2 -7 
2-8 
2 -9 
2-10 
2-11 

Epoch (Universal Time) 
Year-Month-Day -Hour-Min 

63-8-22-6-12-14 
63-8-26-17-0 
63-8-31-0-0 
63-9-5-0-0 
63 -9-9-0-0 
63-9-12-2-0 
63-9-17-2-0 
63 -9 -20-2-0 
63 -9 -27 -2-0 
63-10-1-2-0 
63-10-8-2-0 
63-10-14-2-0 
63-10-22-2-0 
63 -10-3 0-0-0 
63 -1 1-6 -0-0 
63-11-12-0-0 

63-11-28-1-0 
63-12-4-0-0 
63-12-10-0-0 
63-12-16-17-0 
64-1-6-17-0 
64- 1 -9 -6-0 
64-1-20-0-0 
64-1-29-20-0 
64-2-5-16-0 
64-2-10-19-0 
64-2-17-0-0 

Semimajor 
AXiS 
(km) 

42164.58 
42164.52 
42166.02 
42166.39 
42166.35 
42166.55 
42166.70 
42167.42 
42167.51 
42168.88 
42169.14 
42169.78 
42171.51 
42171.09 
42 172.15 
42172.51 

42165.89 
42167.20 
42167.18 
42 168.17 
42168.01 
42169.90 
42171.43 
42171.91 
42172.89 
42173.31 
42 174.89 

k c  entricit! 

.00018 

.00016 

.00018 

.00012 

.00015 

.00015 

.00018 

.00018 

.00022 

.00024 

.00020 

.00028 

.00026 

.00028 

.00025 

.00031 

.00005 

.00009 

.00010 

.00007 

.00013 

.00015 
-00012 
.00019 
.00019 
.00014 
.00019 

hclination 
(degrees) 

33.083 
33 .OS0 
33.062 
33.064 
33 -048 
33.079 
33.043 
33.010 
33.046 
33.039 
33.013 
32.982 
32.993 
32.948 
32.952 
32.920 

32.920 
32.892 
32.881 
32.872 
32.867 
32.857 
32.826 
32.859 
32.800 
32.833 
32.762 

Mean 
h o m a l y  
:degrees: 

24.126 
190.841 
296.125 
333.521 
326.207 
3.657 
12.694 
359 3 7 0  
38.922 
26.615 
42.889 
36.727 
62.833 
29.865 
36.699 
108.239 

222.170 
39.435 
51.942 
300.000 
332.997 
165.031 
29.098 
37.956 
321.168 
32.517 
347.774 

26.285 
26.099 
30.073 
357.756 
9.077 
4.697 
0.581 
16.282 
344.162 
0.433 
350.866 
2.673 
344.246 
354.548 
3 54.3 13 
3.425 

203.901 
17.564 
10.958 
24.505 
11.625 
16.992 
28.842 
13.171 
36.275 
14.553 
35.551 

317.569 
317.454 
317.475 
317.362 
317.272 
317.224 
317.165 
3 17 .OS8 
316.996 
3 16 -944 
316.780 
316.813 
316.603 
316.570 
316.328 
316.308 

315.976 
315.9 19 
315.877 
315.735 
315.544 
315.469 
315.300 
315.212 
3 15.075 
314.982 
314.883 
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On 6.0 January 1964, the hour angle of the vernal equinox A west of Greenwich (expressed in hours, 
with 24 hours = 3607 was 

6 hrs 58 minutes 27.484 seconds (from the Nautical Almanac) 

On 7.0 January 1964, the hour angle of A w a s  

7 hrs  2 min 24.036 sec. 

Interpolating, the hour angle of A on 6 January at 17 hours Universal Time was 

0 hours 1 minute 15.042 seconds, or 
0.313 degrees west of Greenwich . 

In Figure E-1, the orbit angle 27.003' is taken directly as 360' - the mean anomaly, because the 
orbit is nearly circular. The reported period for this orbit was 

= 1436.21696 minutes . 
TP 

The earth's sidereal rotation period is taken to be 

Tesrth = 1436.06817 minutes . 

Thus, if the satellite is assumed to traverse orbit 2-5 at a nearly uniform rate, it will reach the 
celestial equator at a time when the Greenwich meridian has proceeded eastward from the epoch 

15.378 x 1436.21696/1436.06817 = 15.380' . 

Thus, the estimated geographic longitude of the ascending equator crossing nearest to the epoch 
of orbit 2-5 is 

Ascending equator crossing longitude = -(44.456 + 0.313 + 15.380) 

= -60.149'. 

The estimated time of this crossing is 

15.380°/15"/hr. = 1.025 hours after the epoch. 

The crossing time (Table 1) is thus estimated to be at 

6.751 January 1964 (18.025/24 + 6.0, January 1964) . 
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Appendix F 

CALCULATION O F  THE RADIATION PRESSURE ON SYNCOM 11 

Consider a flat-plate element M, of the surface of Syncom 11, whose normal ii is at angle 0 

with respect to the sun's rays (Figure F-1). The sun's radiant energy can be thought of as being 
made up of a stream of material particles such as dm, moving at the speed of light c . If the energy 
of each particle is dE, then from Einstein's classical energy-mass equivalence statement, 

Upon striking the surface, the incident radiation may: 

0 Reflect completely off the surface at an equal "reflection" angle, undegraded in energy 

.Be absorbed into the body of the plate as thermal energy and partially reradiated in all di- 
rections from the surface at a reduced flux, depending on the surface and on the thermal 
properties of the plate and body of the spacecraft 

.Be partially "reflected" and absorbed and reradiated, depending on the surface properties of 
the plate 

An estimate of the radiation pressure on Syncom 11 wil l  be calculated assuming complete light ab- 
sorption with no reradiation. This is not the most conservative condition but will  serve to show 
the order of magnitude of the effect. 

c A? 

Figure F-1-Flat plate& of satellite surfoce,with normal 
at angle 6 with respect to sun's rays. 

53 



Light-particle dm has c d m  momentum in the direction of the sun's rays  before striking the 
plate element AA. Thus ( c )  dm momentum is transferred to the plate with each light-particle 
collision. From Newton's second law, the impulse transferred to the plate in the time of action 
dt, of dm alone, is; 

d~ acts on the plate element in the direction of the sun's rays. Assume that the discontinuous col- 
lision processes of (F-2) are so frequent as to amount to a smooth transfer of momentum between 
the stream of light particles and the plate; dt can then be replaced by A t ,  a small but finite time 
interval; by O F ,  a smooth, constant small reactive force on the plate element AA; and d m  can 
be replaced by &TI, a small but finite light particle mass impinging on the plate surface M in A t  

time. (F-2) then becomes 

&(radiation force) A t  = ( c ) b n ,  or  

am 
&(radiation force) = ( c )  nt (F-3) 

By the mass-energy equivalence relation (F-1) written for the finite small elements involved in 
the continuous momentum transfer, 

where AE is the energy flux falling on plate element M in A t  time. Clearly, 

where p is the sun's energy flux in units of energy/time-area, and M C O S  B is the projected area 
of the element in the direction of the sun's rays. Combining (F-3), (F-4) and (F-5); 

(F-6) - P  
&/AA, = projected area-radiation pressure = P, - 7 I 

in the direction of the sun's rays 

(Mp = AA C O S  0 = projected a rea  of the plate element in the direction of the sun's rays.) 

The value of p outside the earth's atmosphere is estimated to be (see Reference 9) 

, 

p = 95.5 ft-pounds/ft2-sec. 

c = 9.835 x 108 ft./sec. 
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(F-6) thus becomes; 

P.. (pro] ected area-solar Dressure 

. 

-?. - 
(F-7) = .9725 x lo-' pounds/ft? d s t  a fully absorb*- 

surface in the direction of the 
sun's rays) 

Figure F-2 shows the configuration of Syncom I1 with respect to  the sun during the drift. For 
the cylindrical configuration in Figure F-2, from (F-7); 

F (absorb-total) = F(absorb-body) + F(absorb-end) = .9725 x lo-' (HD cos B + rD2 sin 8/4)(F-8) 

The weight of Syncom II in the 24-hour orbit (including the apogee motor) is about 75 pounds. 
Other parameters are: 

H = 15" 

D = 28" 

8 = 21" (in late August 1963) . 

F(ABS0RB-END) 

F(ABS0RB -TOTAL) 

Figure F-2-Configuration of Syncom I1 with respect to the sun during drift. 

55 



Thus, HDcos 0 + v D 2  s i n  H/4 = 613 in2 = 4.25 ft2; from (F-8)) 

F (radiation force with total absorption) = 4.13 X lo-' pounds. 

The mean solar gravity force on Syncom 11 in orbit is given as 

p s  x 75/32.15 
F (solar gravity) e (1  A . U .  ) 2  ' 

where 1 astronomical unit ( A . U .  = the earth's mean distance from the sun) 
= 4.9 x 10" f t .  

92,900,000 miles 

. 

p, = 333,OOOp, = 333,000 x 1.40765 x 1OI6 ft3/sec2 = 4.18 x lo2' ft3/sec2. 

Therefore 

F(so1ar gravity) - 4.18 X X 75 
= 4.07 x pounds . on Syncom I1 (4.9)2 X l o z 2  X 32.15 

It is evident that solar radiation pressure on Syncom I1 causes perturbations which are insignifi- 
cant compared to  solar gravity perturbations. 
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